SENEGAL-II (CBCS 2015): WINTER - 2016 SUBJECT: HIGH PERFORMANCE COMPUTING

Time: 11.00 A M To 2.00 PM Max. Marks: 60. : Saturdax :26-11-2016 Date N.B.: All questions are COMPULSORY. 1) Both the section should be written in SEPARATE answer books. 2) Figures to the RIGHT indicate full marks. 3) Draw neat labeled diagrams WHEREVER necessary. 4) SECTION-I (10)Q.1 What are data and control hazards in pipeline architecture? How process management is performed by the operating system in a HPC (10) environment. (10)O.2 What are the levels of parallel processing? (10)With respect to compilers explain a) Function call and return mechanism b) Loop optimization Q.3 Explain how a divide and conquer algorithm strategy can be parallelised. (10)What is parallel algorithm? Explain the design process of Parallel Algorithms. (10)SECTION-II (10)Q.4 Discuss General Model Of Shared Memory Programming (10)What is MPI? Describe Principles of MPP. 0.5 What is multiprocessor cache coherence problem? (10)Explain the shared memory architecture for symmetric multiprocessing (10)Q.6 What tools are used to measure the performance of software related to use of (10) memory hierarchy OR Explain how the performance of a parallel program is measured in multi-core (10) environment

* *

SENEGAL-II (CBCS 2015): WINTER - 2016 SUBJECT: HIGH PERFORMANCE COMPUTING

Time: 11.00 A M To 2.00 P.M Max. Marks: 60. : Salurdax :26-11-2016 N.B.; All questions are COMPULSORY. 1) Both the section should be written in SEPARATE answer books. 2) Figures to the RIGHT indicate full marks. Draw neat labeled diagrams WHEREVER necessary. SECTION-I (10)Q.1 What are data and control hazards in pipeline architecture? How process management is performed by the operating system in a HPC (10) environment. (10)Q.2 What are the levels of parallel processing? (10)With respect to compilers explain a) Function call and return mechanism b) Loop optimization Q.3 Explain how a divide and conquer algorithm strategy can be parallelised. (10)OR What is parallel algorithm? Explain the design process of Parallel Algorithms. (10)SECTION-II (10)Q.4 Discuss General Model Of Shared Memory Programming What is MPI? Describe Principles of MPP. (10)Q.5 What is multiprocessor cache coherence problem? (10)OR Explain the shared memory architecture for symmetric multiprocessing (10)Q.6 What tools are used to measure the performance of software related to use of (10) memory hierarchy Explain how the performance of a parallel program is measured in multi-core (10) environment

*

SENEGAL – II (C.B.C.S 2015 Course): WINTER - 2016 SUBJECT: ADVANCED COMPUTER ALGORITHMS

	nday -11, 2016	Time: 11'00 A \ Max Marks: 60	9.To 2:00
N.B. 1) 2) 3) 4)	All questions are COMPULSORY . Figures to the right indicate FULL marks. Answer to the section should be written in SEPERAT Assume suitable data if necessary.	E answer book.	
	SECTION- I		
Q.1	Prove that the running time of Insertion Sort(A) is Qu function of 'n' where $n = length [A]$.	nadratic (10)	
Q.1	OR Prove by induction that Fibonacci numbers grow exponentially and satisfies the equality		
	$Fi = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}}$	(10)	
		3	
Q.2	Describe Time and Space Complexity of Algorithms. If $f(n) = a_m n^m + \dots + a_1 n + a_0$ Then prove that $f(n) = O(n^m)$	(10)	officers of the section of the secti
Q.2	OR How is Divide and Conquer strategy applied to comp product of two n x n matrices?	outer (10)	
Q.3	Explain the algorithm of RADIX Sort.	(10)	
Q.3	OR Write a Pseudocode to delete a given node z from a E Three cases should be clearly shown. i) if z has no children ii) If z has only one child and iii) If z has two childrens	BST. (10)	
	SECTION- II	9 4 1	
Q.4	Give the pseudocode for Naïve string Matching Appr	roach. (10)	
Q.4	OR Define Minimum Spanning Trees and Explain Prim's Algorithm with example.	(10)	

Q. 5	Draw a state space tree for Travelling Salseperson problem with $n=4$ and $i_0=i_4=1$	(10)
	OR	
Q. 5	With the help of neat diagram explain the Eight Queens Problem.	(10)
Q. 6	Define NP hard. Draw the Venn Diagram for Commonly Believed relationship among P, NP-Complete and NP-Hard Problems.	(10)
	OR	
Q. 6	Let $m = 2$, $n=6$, $(t_1, t_2, t_3, t_4, t_5, t_6) = (8, 6, 5, 4, 4, 1)$ and $k = 4$. Show the complete schedule and indicate overall optimal schedule for all the tasks.	(10)

SENEGAL – II (C.B.C.S 2015 Course): WINTER - 2016 SUBJECT: ADVANCED COMPUTER ALGORITHMS

-		10/ay	Time: 11'00 / Max Marks: 60	A.M.TO 2:00	
N.B.	1) 2) 3) 4)	All questions are COMPULSORY. Figures to the right indicate FULL marks. Answer to the section should be written in SEPERAT Assume suitable data if necessary.	E answer book.	(1.37)	
		SECTION- I			
Q.1		Prove that the running time of Insertion Sort(A) is Qu function of 'n' where $n = length [A]$.	nadratic (10)		
Q.1		OR Prove by induction that Fibonacci numbers grow exponentially and satisfies the equality $Fi = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}}$	(10)		
			×.		
Q.2	med (active	Describe Time and Space Complexity of Algorithms. If $f(n) = a_m n^m + \dots + a_1 n + a_0$ Then prove that $f(n) = O(n^m)$	(10)	e e americ Georgegouige	
Q.2		OR How is Divide and Conquer strategy applied to comp product of two n x n matrices?	uter (10)		
Q.3		Explain the algorithm of RADIX Sort.	(10)		
Q.3		OR Write a Pseudocode to delete a given node z from a E Three cases should be clearly shown. i) if z has no children ii) If z has only one child and iii) If z has two childrens	3ST. (10)		
SECTION- II					
Q.4		Give the pseudocode for Naïve string Matching Appr OR	roach. (10)		
Q.4		Define Minimum Spanning Trees and Explain Prim's Algorithm with example.	(10)		

Draw a state space tree for Travelling Salseperson problem with $n=4$ and $i_0=i_4=1$	(10)	
	/4.0\	
Problem.	(10)	
Define NP hard. Draw the Venn Diagram for Commonly Relieved relationship among P. NP-Complete and NP-Hard	(10)	
Problems.		
OR		
Let $m = 2$, $n=6$, $(t_1,t_2,t_3,t_4,t_5,t_6) = (8,6,5,4,4,1)$ and $k = 4$. Show the complete schedule and indicate overall optimal schedule for all the tasks.	(10)	
	with n= 4 and $i_0 = i_4 = 1$ OR With the help of neat diagram explain the Eight Queens Problem. Define NP hard. Draw the Venn Diagram for Commonly Believed relationship among P, NP-Complete and NP-Hard Problems. OR Let m = 2, n=6, $(t_1,t_2,t_3,t_4,t_5,t_6) = (8,6,5,4,4,1)$ and k = 4. Show the complete schedule and indicate overall optimal	with n= 4 and $i_0 = i_4 = 1$ OR With the help of neat diagram explain the Eight Queens Problem. Define NP hard. Draw the Venn Diagram for Commonly Believed relationship among P, NP-Complete and NP-Hard Problems. OR Let m = 2, n=6, $(t_1, t_2, t_3, t_4, t_5, t_6) = (8, 6, 5, 4, 4, 1)$ and $k = 4$. Show the complete schedule and indicate overall optimal (10)

*