M. SC. (Analytical Chemistry) / M. SC. (Organic Chemistry) / M. SC. (Inorganic Chemistry) Sem-II (Choice Based Credit & Grade System): **WINTER - 2018**

SUBJECT: ORGANIC CHEMISTRY-II

Day

Friday

Time: 03.00 PM TO 06.00 PM

Date

12/10/2018

W-2018-0985

Max. Marks: 60

N.B.:

- 1) All questions are COMPULSORY.
- 2) Figures to the right indicate FULL marks.
- Answers to both the sections should be written in **SEPARATE** answer books. 3)

SECTION - I

Attempt **ANY THREE** of the following: **Q.1**

[15]

- Discuss the mechanism and applications of Perkin's reaction.
- What are phosphorus ylides? How are they prepared? Discuss their b) applications.
- c) Explain regiospecific nature of organo-thallium compounds.
- d) Discuss the mechanism and applications of Dieckmann condensation.
- Write a note on: Birch reduction.
- Predict the product/s in ANY THREE of the following reactions by giving [15] **Q.2** mechanism. Justify your answer:

a)
$$\frac{\text{COCH}_3}{\text{H}_2\text{O}_2/\text{OH}}$$
?

$$\begin{array}{ccc}
O & & & & & \\
C - CH_3 & & & & \\
\hline
& & &$$

c)
$$\frac{\text{i) } OsO_4 / Pyridine}{\text{ii) } H_2O / H^+} ?$$

d)
$$\frac{\text{i) LiAlH}_4 / \text{Ether}}{\text{ii) H}_2\text{O} / \text{H}^+} ?$$

SECTION - II

Q.3 Attempt ANY THREE of the following:

a) Calculate λ_{max} for the following:

b) Arrange the following compounds with their increasing order of IR streaching frequencies. Justify your answer.

- c) i) PMR spectrum of acetonitrile shows shielded protons as compared to that of chloromethane. Explain.
 - ii) TMS is used as internal standard in PMR. Explain.
- d) i) Explain molecular ion and base peak with suitable example.
 - ii) Explain double focusing technique in MS.
- e) Explain o-Hydroxy acetophenone on methylation shows a blue shift while p-hydroxyacetophenone on methylation shows a red shift.

Q.4 Assign the structure to **ANY THREE** of the following:

[15]

[15]

- a) MF : $C_5H_6O_3$
 - UV : featureless above 210 nm
 - IR : $1820, 1770 \text{ cm}^{-1}$
 - PMR : δ 1.95 (quin J = 6Hz, 12 mm)
 - $: \delta 2.70 \text{ (t, J = 6Hz, 24 mm)}$
- **b)** MF : $C_{10}H_{10}O_6$
 - UV : 206, 245, 251, 257, 263 nm (∈ 8300, 90, 120, 180, 140)
 - IR : 3600, 2220, 1600, 1490, 700 cm⁻¹
 - PMR : δ 1.7 s, 13 mm
 - $: \delta 2.5 \text{ s}, 4.5 \text{ mm}$
 - : δ 2.9 s, 4.5 mm
 - : δ 7.2 m, 13 mm
 - $: \delta 7.55 \text{ m}, 9 \text{ mm}$
- c) MF : $C_{10}H_{15}N$
 - IR : 1510, 1610 cm^{-1}
 - PMR : $\delta 2.48 \text{ (s, 6H)}$
 - $: \delta 2.89 (s, 6H)$
 - $: \delta 6.38 \text{ (bs, 2H)}$
 - $: \delta 7.27 (t, 1H)$

d) MF : $C_6H_{10}O_2$

IR : 1195, 1630, 1720 cm⁻¹ PMR : δ 1.3 (t, J = 7Hz, 3H) : δ 2.0 (d, J = 7Hz, 3H) : δ 4.2 (q, J) = 7Hz, 2H) : δ 5.8 (d, J = 16Hz, 1H)

: δ 6.9 (dq J = 7 and 16 Hz, 1H)

e) MW : 122

m/e : 123, 122, 105, 77, 51

IR : 2500 - 3300 (br), 1690, 1504, 1485, 1285, 750, 690 cm⁻¹

UV : 272 nm

PMR : δ 12.69 (s, 1H)

: δ 8.20 (m, 2H) : δ 7.60 (m, 3H)

* * * *

Table 1:

Some characteristic IR data in cm⁻¹. Only approximate values are listed.

\equiv C-H 3300,	= C-H 3050
O = C - H 2800,	N-H 3300
O – H 3600 (free),	$C \equiv N \ 2250$
$C \equiv C 2200,$	C = C 1620 - 1680
Aromatic $(C = C)$ 1600 to 1500,	-C = N 1660
Saturated ketone 1720,	Saturated ester 1750
Saturated acids 1720,	Saturated aldehydes 1730,
Saturated amides 1650	$CH = CH_2 900 \text{ and } 910$
CH = CH (trans) 960,	CH = CH - (cis) 690
$C = CH_2 890$ NO ₂ 1530 and 1050	C = CH 790 - 840

Bands for aromatic compounds depends on the number of adjacent free aromatic hydrogens:

Table 2:

Approximate chemical shifts on methyl, methylene and methine protons, in δ values TMS as internal reference.

C CII o o	
$C - CH_3 0.9,$	$O - C - CH_3 1.4$
$C = C - CH_3 1.6,$	$Ar - CH_3 2.3$
$O = C - CH_3 \ 2.2,$	$N - CH_3 2.3$,
$S - CH_3 2.1$,	O - CH ₃ 3.3
C-H in cyclopropane 0.7,	$C = CH_2$ exocyclic 4.6,
$C = CH_2$ open chain 5.3	C – CH 5.1