B. Tech. SEM -I (Computer Science & Business Systems) (CBCS 2018 COURSE) : WINTER - 2018

SUBJECT: MATHEMATICS - I

Day : Thursday

Time: 10.00 AM To 01.00 PM

Date : 22/11/2018

Max. Marks: 60

N. B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable calculator is **ALLOWED**.

W-2018-2254

Q. 1 Solve:

$$\mathbf{a)} \quad \int\limits_{0}^{\infty} \int\limits_{0}^{x} x \, e^{\frac{-x^2}{y}} \, dx dy \tag{05}$$

b)
$$\int_{0}^{1} \int_{4y}^{4} e^{x^2} dx dy$$
 (05)

OR

a) Evaluate
$$\iint y \, dx \, dy$$
 over the area bounded by $y = x^2$ and $x + y = 2$. (05)

b) Evaluate
$$\iint_R \sqrt{xy (1-x-y)} dxdy$$
, where R is the area bounded by $x = 0, y = 0$ and $x + y = 1$.

Q. 2 a) Find the volume cut from the sphere

(05)

 $x^{2} + y^{2} + z^{2} = a^{2}$ by the cone $x^{2} + y^{2} = z^{2}$.

b) Find by double integration the area inside the circle $r = a \sin \theta$ and outside (05) the cardioid $r = a (1 - \cos \theta)$.

OR

Find the area bounded by the curve $x(x^2 + y^2) = a(y^2 - x^2)$ and its (10) asymptote. Also find the area of the loop of the curve.

Q. 3 a) Prove that:
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
. (05)

b) Using Venn diagram, prove or disprove: (05)

 $A \oplus (B \oplus C) = (A \oplus B) \oplus C.$

OR

a) Prove that:
$$P \to (q \to r)$$
 and $(p \land \overline{r}) \to \overline{q}$ are logically equivalent. (05)

b) Construct the truth table for the following statement:
$$(\sim q \rightarrow \sim p) \rightarrow (p \rightarrow q)$$
. (05)

$$Y = ab + \overline{b}c + \overline{c} \overline{a}$$
.

P. T. O.

b) Minimize the following function using a K - map $F(W, X, Y, Z) = \sum (0, 4, 8, 12).$ (05)

OF

Express
$$\overline{X}Y + Y(\overline{Z}(\overline{Z} + Y))$$
 into canonical product – of – sums form. (10)

- **Q. 5** a) Show that : $a(-b) = (-a)b = -ab \forall a, b \in R$, where R is a ring. (05)
 - **b)** Consider $G = \{1, 5, 7, 11, 13, 17\}$ under multiplication modulo 18. (05) Find $5^{-1}, 7^{-1}$.

OR

- a) Let G_1 and G_2 be subgroups of a group G. Show that $G_1 \cap G_2$ is also a (05) subgroup of G.
- **b)** Let G be a group with multiplication. Show that: $(ab)^{-1} = b^{-1} a^{-1} \forall a, b \in G$. (05)
- Q. 6 a) Prove the following by mathematical induction: (05)

$$1^{3} + 2^{3} + 3^{3} + - - + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}.$$
Solve: $a_{r} + a_{r-1} + a_{r-2} = r2^{r}.$ (05)

OR

a) Prove the following by mathematical induction: (05)

$$1^{2} + 2^{2} + 3^{2} + - - - + n^{2} = \left[\frac{n(n+1)(2n+1)}{6} \right].$$

b) Determine the discrete numeric functions corresponding to the following (05) generation function:

$$A(Z) = \frac{3 - 5Z}{\left(1 - 2Z - 3Z^2\right)}.$$

* * * * *